多晶硅,是单质硅的一种形态。熔融的单质硅在过冷条件下凝固时,硅原子以金刚石晶格形态排列成许多晶核,如这些晶核长成晶面取向不同的晶粒,则这些晶粒结合起来,就结晶成多晶硅。利用价值:从目前国际太阳电池的发展过程可以看出其发展趋势为单晶硅、多晶硅、带状硅、薄膜材料(包括微晶硅基薄膜、化合物基薄膜及染料薄膜)。
性质
灰色金属光泽。密度2.32~2.34。熔点1410℃。沸点2355℃。溶于氢氟酸和硝酸的混酸中,不溶于水、硝酸和盐酸。硬度介于锗和石英之间,室温下质脆,切割时易碎裂。加热至800℃以上即有延性,1300℃时显出明显变形。常温下不活泼,高温下与氧、氮、硫等反应。高温熔融状态下,具有较大的化学活泼性,能与几乎任何材料作用。具有半导体性质,是极为重要的优良半导体材料,但微量的杂质即可大大影响其导电性。电子工业中广泛用于制造半导体收音机、录音机、电冰箱、彩电、录像机、电子计算机等的基础材料。由干燥硅粉与干燥氯化氢气体在一定条件下氯化,再经冷凝、精馏、还原而得。
多晶硅可作拉制单晶硅的原料,多晶硅与单晶硅的差异主要表现在物理性质方面。例如,在力学性质、光学性质和热学性质的各向异性方面,远不如单晶硅明显;在电学性质方面,多晶硅晶体的导电性也远不如单晶硅显著,甚至于几乎没有导电性。在化学活性方面,两者的差异极小。多晶硅和单晶硅可从外观上加以区别,但真正的鉴别须通过分析测定晶体的晶面方向、导电类型和电阻率等。
多晶硅是生产单晶硅的直接原料,是当代人工智能、自动控制、信息处理、光电转换等半导体器件的电子信息基础材料。被称为“微电子大厦的基石”。工业生产方法多晶硅的生产技术主要为改良西门子法和硅烷法。西门子法通过气相沉积的方式生产柱状多晶硅,为了提高原料利用率和环境友好,在前者的基础上采用了闭环式生产工艺即改良西门子法。该工艺将工业硅加工成SiHCI ,再让SiHCl3在H2气氛的还原炉中还原沉积得到多晶硅。还原炉排出的尾气H2、SiHCl3 和HCl经过分离后再循环利用。硅烷法是将硅烷通入以多晶硅晶种作为流化颗粒的流化床中,使硅烷裂解并在晶种上沉积,从而得到颗粒状多晶硅。改良西门子法和硅烷法主要生产电子级晶体硅,也可以生产太阳能级多晶硅。
西门子法
西门子法是由德国Siemens公司发明并于1954 年申请了专利1965年左右实现了工业化。经过几十年的应用和展,西门子法不断完善,先后出现了第一代、第二代和第三代,第三代多晶硅生产工艺即改良西门子法,它在第二代的基础上增加了还原尾气干法回收系统、SiCl4回收氢化工艺,实现了完全闭环生产,是西门子法生产高纯多晶硅技术的最新技术,其具体工艺流程如图1所示。硅在西门子法多晶硅生产流程内部的循环利用。
硅烷法
硅烷法是将硅烷通入以多晶硅晶种作为流化颗粒的流化床中, 是硅烷裂解并在晶种上沉积,从而得到颗粒状多晶硅。因硅烷制备方法不同,有日本Komatsu发明的硅化镁法,其具体流程如图2所示、美国Union Carbide发明的歧化法、美国MEMC采用的NaAlH4与SiF4反应方法。
硅化镁法是用Mg2Si与NH C1在液氨中反应生成硅烷。该法由于原料消耗量大,成本高,危险性大,而没有推广,目前只有日本Komatsu使用此法。现代硅烷的制备采用歧化法,即以冶金级硅与SiC14为原料合成硅烷,首先用SiCl4、Si和H2反应生成SiHCl3 ,然后SiHCl3 歧化反应生成SiH2Cl2,最后由SiH2Cl2 进行催化歧化反应生成SiH4 ,即:3SiCl4+ Si+ 2H2= 4SiHCl3,2SiHC13= SiH2Cl2+ SiC14,3SiH2C12=SiH4+ 2SiHC13。由于上述每一步的转换效率都比较低,所以物料需要多次循环,整个过程要反复加热和冷却,使得能耗比较高。制得的硅烷经精馏提纯后,通人类似西门子法固定床反应器,在800℃下进行热分解,反应如下:SiH4= Si+ 2H2。
硅烷气体为有毒易燃性气体,沸点低,反应设备要密闭,并应有防火、防冻、防爆等安全措施。硅烷又以它特有的自燃、爆炸性而著称。硅烷有非常宽的自发着火范围和极强的燃烧能量,决定了它是一种高危险性的气体。硅烷应用和推广在很大程度上因其高危特性而受到限制在涉及硅烷的工程或实验中,不当的设计、操作或管理均会造成严重的事故甚至灾害。然而,实践表明,过分的畏惧和不当的防范并不能提供应用硅烷的安全保障。因此,如何安全而有效地利用硅烷,一直是生产线和实验室应该高度关注的问题。
硅烷热分解法与西门子法相比,其优点主要在于:硅烷较易提纯,含硅量较高(87.5%,分解速度快,分解率高达99%),分解温度较低,生成的多晶硅的能耗仅为40 kW ·h/kg,且产品纯度高。但是缺点也突出:硅烷不但制造成本较高,而且易燃、易爆、安全l生差,国外曾发生过硅烷工厂强烈爆炸的事故。因此,工业生产中,硅烷热分解法的应用不及西门子法。改良西门子法目前虽拥有最大的市场份额,但因其技术的固有缺点—产率低,能耗高,成本高,资金投入大,资金回收慢等,经营风险也最大。只有通过引人等离子体增强、流化床等先进技术,加强技术创新,才有可能提高市场竞争能力。硅烷法的优势有利于为芯片产业服务,目前其生产安全性已逐步得到改进,其生产规模可能会迅速扩大,甚至取代改良西门子法。虽然改良西门子法应用广泛,但是硅烷法很有发展前途。
与西门子方法相似,为了降低生产成本,流化床技术也被引入硅烷的热分解过程,流化床分解炉可大大提高SiH4 的分解速率和Si的沉积速率。但是所得产品的纯度不及固定床分解炉技术,但完全可以满足太阳能级硅质量要求,另外硅烷的安全性问题依然存在。
美国MEMC公司采用流化床技术实现了批量生产,其以NaA1H4 与SiF4 为原料制备硅烷,反应式如下:SiF4+NaAlH4=Sil4+4NaAlF4。硅烷经纯化后在流化床式分解炉中进行分解,反应温度为730℃左右,制得尺寸为1000微米的粒状多晶硅。该法能耗低,粒状多晶硅生产分解电耗为12kW·h/kg左右,约为改良西门子法的1/10,且一次转化率高达98%,但是产物中存在大量微米尺度内的粉尘,且粒状多晶硅表面积大,易被污染,产品含氢量高,须进行脱氢处理。
冶金法
冶金法制备太阳能级多晶硅(Solar Grade Silicon简称SOG—Si),是指以冶金级硅(MetallurgicalGrade Silicon简称MG-Si)为原料(98.5%~99.5%)。经过冶金提纯制得纯度在99.9999%以上用于生产太阳能电池的多晶硅原料的方法。冶金法在为太阳能光伏发电产业服务上,存在成本低、能耗低、产出率高、投资门槛低等优势,通过发展新一代载能束高真空冶金技术,可使纯度达到6N以上,并在若干年内逐步发展成为太阳能级多晶硅的主流制备技术。
不同的冶金级硅含有的杂质元素不同,但主要杂质基本相同,主要包括Al、Fe、Ti、C、P、B等杂质元素。而且针对不同的杂质也研究了一些有效的去除方法。自从1975年Wacker公司用浇注法制备多晶硅材料以来,冶金法制备太阳能级多晶硅被认为是一种有效降低生产成本、专门定位于太阳多级多晶硅的生产方法,可以满足光伏产业的迅速发展需求。针对不同的杂质性质,制备太阳能级多晶硅的技术路线,如图3所示。
利用价值
在太阳能利用上,单晶硅和多晶硅也发挥着巨大的作用。虽然从目前来讲,要使太阳能发电具有较大的市场,被广大的消费者接受,就必须提高太阳电池的光电转换效率,降低生产成本。从目前国际太阳电池的发展过程可以看出其发展趋势为单晶硅、多晶硅、带状硅、薄膜材料(包括微晶硅基薄膜、化合物基薄膜及染料薄膜)。
工业发展
从工业化发展来看,重心已由单晶向多晶方向发展,主要原因为;[1]可供应太阳电池的头尾料愈来愈少;[2] 对太阳电池来讲,方形基片更合算,通过浇铸法和直接凝固法所获得的多晶硅可直接获得方形材料;[3]多晶硅的生产工艺不断取得进展,全自动浇铸炉每生产周期(50小时)可生产200公斤以上的硅锭,晶粒的尺寸达到厘米级;[4]由于近十年单晶硅工艺的研究与发展很快,其中工艺也被应用于多晶硅电池的生产,例如选择腐蚀发射结、背表面场、腐蚀绒面、表面和体钝化、细金属栅电极,采用丝网印刷技术可使栅电极的宽度降低到50微米,高度达到15微米以上,快速热退火技术用于多晶硅的生产可大大缩短工艺时间,单片热工序时间可在一分钟之内完成,采用该工艺在100平方厘米的多晶硅片上作出的电池转换效率超过14%。据报道,目前在50~60微米多晶硅衬底上制作的电池效率超过16%。利用机械刻槽、丝网印刷技术在100平方厘米多晶上效率超过17%,无机械刻槽在同样面积上效率达到16%,采用埋栅结构,机械刻槽在130平方厘米的多晶上电池效率达到15.8%。
国际多晶硅产业概况
当前,晶体硅材料(包括多晶硅和单晶硅)是最主要的光伏材料,其市场占有率在90%以上,而且在今后相当长的一段时期也依然是太阳能电池的主流材料。多晶硅材料的生产技术长期以来掌握在美、日、德等3个国家7个公司的10家工厂手中,形成技术封锁、市场垄断的状况。
多晶硅的需求主要来自于半导体和太阳能电池。按纯度要求不同,分为电子级和太阳能级。其中,用于电子级多晶硅占55%左右,太阳能级多晶硅占45%,随着光伏产业的迅猛发展,太阳能电池对多晶硅需求量的增长速度高于半导体多晶硅的发展,预计到2008年太阳能多晶硅的需求量将超过电子级多晶硅。
1994年全世界太阳能电池的总产量只有69MW,而2004年就接近1200MW,在短短的10年里就增长了17倍。专家预测太阳能光伏产业在二十一世纪前半期将超过核电成为最重要的基础能源之一。
据悉,美国能源部计划到2010年累计安装容量4600MW,日本计划2010年达到5000MW,欧盟计划达到6900MW,预计2010年世界累计安装量至少18000MW。从上述的推测分析,至2010年太阳能电池用多晶硅至少在30000吨以上,表2给出了世界太阳能多晶硅工序的预测。据国外资料分析报道,世界多晶硅的产量2005年为28750吨,其中半导体级为20250吨,太阳能级为8500吨,半导体级需求量约为19000吨,略有过剩;太阳能级的需求量为15000吨,供不应求,从2006年开始太阳能级和半导体级多晶硅需求的均有缺口,其中太阳能级产能缺口更大。
据日本稀有金属杂志2005年11月24日报道,世界半导体与太阳能多晶硅需求紧张,主要是由于以欧洲为中心的太阳能市场迅速扩大,预计2006年,2007年多晶硅供应不平衡的局面将为愈演愈烈,多晶硅价格方面半导体级与太阳能级原有的差别将逐步减小甚至消除,2005年世界太阳能电池产量约1GW,如果以1MW用多晶硅12吨计算,共需多晶硅是1.2万吨,2005-2010年世界太阳能电池平均年增长率在25%,到2010年全世界半导体用于太阳能电池用多晶硅的年总的需求量将超过6.3万吨。
世界多晶硅主要生产企业有日本的Tokuyama、三菱、住友公司、美国的Hemlock、Asimi、SGS、MEMC公司,德国的Wacker公司等,其年产能绝大部分在1000吨以上,其中Tokuyama、Hemlock、Wacker三个公司生产规模最大,年生产能力均在3000-5000吨。
国际多晶硅主要技术特征
(1)多种生产工艺路线并存,产业化技术封锁、垄断局面不会改变。由于各多晶硅生产工厂所用主辅原料不尽相同,因此生产工艺技术不同;进而对应的多晶硅产品技术经济指标、产品质量指标、用途、产品检测方法、过程安全等方面也存在差异,各有技术特点和技术秘密,总的来说,目前国际上多晶硅生产主要的传统工艺有:改良西门子法、硅烷法和流化床法。其中改良西门子工艺生产的多晶硅的产能约占世界总产能的80%,短期内产业化技术垄断封锁的局面不会改变。
(2)新一代低成本多晶硅工艺技术研究空前活跃。除了传统工艺(电子级和太阳能级兼容)及技术升级外,还涌现出了几种专门生产太阳能级多晶硅的新工艺技术,主要有:改良西门子法的低价格工艺;冶金法从金属硅中提取高纯度硅;高纯度SiO2直接制取;熔融析出法(VLD:Vaper to liquid deposition);还原或热分解工艺;无氯工艺技术,Al-Si溶体低温制备太阳能级硅;熔盐电解法等。
上一条:华电集团页岩气布局思考
下一条:暂时没有!